Assessment Schedule - 2008

Calculus: Differentiate functions and use derivatives to solve problems (90635)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Differentiate functions and use derivatives to	ONE (a)	$\frac{dy}{dx} = \frac{1}{2}(x^2 - x)^{\frac{-1}{2}}(2x - 1)$	A1	Or equivalent.	Achievement: Three of Code A
	solve problems.	(b)	$\frac{dy}{dx} = \frac{(x^3 - x).3\cos 3x - \sin 3x.(3x^2 - 1)}{(x^3 - x)^2}$	A1	Or equivalent.	including
		TWO	$\frac{dH}{dw} = 12 - 0.24e^{0.2w}$	A1	Must have derivative.	at least one of Code A1
			Maximum when $\frac{dH}{dw} = 0$ $12 - 0.24e^{0.2w} = 0$	OR		and at least
Achievement				A2	Or equivalent. Units not required.	one of Code A2.
Acl		THREE	$\frac{\mathrm{d}P}{\mathrm{d}t} = -8t - \frac{3000}{2t+1}$ At $t = 3$,	A1 OR	Must have derivative.	
			$\frac{dP}{dt} = -452.57 \text{ possums per month}$	A2	Accept 452 or 453. Accept + or – Units not required.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Merit	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	FIVE (a) (b)(ii) (b)(iii) SIX	$\frac{dx}{dt} = 2\sec^2 t$ $\frac{dy}{dt} = 6\cos 2t$ $\frac{dy}{dx} = \frac{6\cos 2t}{2\sec^2 t}$ $= 3\cos 2t \cdot \cos^2 t$ At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{9}{8}$ $a = -2 \text{ and } a = 6$ $x < -2 \text{ and } x = 7$ $x > 6$ $x = 0 \text{ and } x = 3$ $\frac{dy}{dx} = x =$	A1 OR M1 OR A2 M2	Or equivalent. Accept $x = -2$ and $x = 6$ for (a). Need 3 of questions 5(a), (b)(i), (b)(ii) and (b)(iii) completely correct. Must have derivative. A2 for one dimension. Need both answers. Or equivalent. Units not required.	Merit: Achievement PLUS Two of Code M OR Three of Code M including at least one of Code M1 AND at least one of Code M2.

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Solve more complex differentiation problem(s).	SEVEN	$\frac{x^2}{9} + y^2 = 1 \qquad y = \sqrt{1 - \frac{x^2}{9}}$			Excellence: Either
	problem(s).		Area = $4xy = 4x\sqrt{1 - \frac{x^2}{9}}$			Merit PLUS
			$\frac{dA}{dx} = 4x \cdot \frac{1}{2} \left(1 - \frac{x^2}{9} \right)^{-\frac{1}{2}} \cdot -\frac{2x}{9} + 4 \left(1 - \frac{x^2}{9} \right)^{\frac{1}{2}}$	A1 M1	Accept any valid method.	One of Code E
			Turning point when $A'(x) = 0$ $\frac{x^2}{0} = 1 - \frac{x^2}{0}$	OR	Ignore minor	OR Two of
					arithmetic error.	code E.
			$x = \frac{3}{\sqrt{2}} \text{and} y = \frac{1}{\sqrt{2}}$	A2 M2	Dimensions	
			Area = $2 \times \frac{3}{\sqrt{2}} \times 2 \times \frac{1}{\sqrt{2}} = 6 \text{ m}^2$	OR E	without area. Units not required.	
ellence		EIGHT	$\cos \theta = \frac{S}{L}$			
ith Exc			$I = \frac{600S}{L^3}$			
ment w			$=600S(S^2+1.8^2)^{\frac{-3}{2}}$			
Achievement with Excellence			$\frac{dI}{dS} = -1800S^{2} \left(S^{2} + 3.24\right)^{-\frac{5}{2}} +600\left(S^{2} + 3.24\right)^{-\frac{3}{2}}$		Also A1 for: Chain rule $\frac{dL}{dS} = \frac{S}{\sqrt{S^2 + 3.24}}$	
			+600 (S ² + 3.24) ²	A1 M1	$\frac{dS}{dS} = \frac{\sqrt{S^2 + 3.24}}{\sqrt{S^2 + 3.24}}$ Simple implicit $\frac{dL}{dS} = \frac{S}{L}$	
			$= -\frac{1800S^2}{\left(\sqrt{S^2 + 3.24}\right)^5} + \frac{600S^2}{\left(\sqrt{S^2 + 3.24}\right)^3}$		Also M1 for: - quotient and implicit, $\frac{dI}{dt}$	
			At $S = 1.59 \text{ m}$ $S^2 = 2.52 \text{ L} = 2.4$ $\frac{dL}{dS} = -\frac{1800 \times 2.52}{2.4^5} + \frac{600}{2.4^3}$ $= -13.56$	OR	- derivative of trig product $\frac{dI}{d\theta}$	
			$\frac{dI}{dt} = \frac{dI}{dS} \times \frac{dS}{dt}$ $= -13.56 \times -0.6$ $= 8.138 \text{ Lux s}^{-1}$	A2 M2 E	Units not required. Ignore ±	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Differentiate functions and use derivatives to solve problems.	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	Solve more complex differentiation problem(s).
	Achievement plus	Achievement with Merit plus
$3 \times A$ including at least $1 \times A1$ and $1 \times A2$	$2 \times M$ including at least $1 \times M1$ and $1 \times M2$	1×E
	OR	OR
		2 × E
	$3 \times M$ including at least $1 \times M1$ and $1 \times M2$	

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.